

Django Conntrackt documentation

Django Conntrackt is a simple application intended to provide system
administrators and integrators that deploy servers at client’s premises to
easily keep track of required networ communications between different servers,
routers, client workstations, and even whole networks/sub-networks.

Support

In case of problems with the application, please do not hesitate to contact the
author at django.conntrackt (at) majic.rs. Known issues and planned features
are tracked on website:

	https://projects.majic.rs/conntrackt

The library is hosted on author’s own server, alongside a mirror on
Bitbucket:

	https://code.majic.rs/conntrackt

	https://bitbucket.org/redpenguin/conntrackt

License

Django Conntrackt application is licensed under the terms of GPLv3, or (at
your option) any later version. You should have received the full copy of the
GPLv3 license in the local file LICENSE-GPLv3, or you may read the full text
of the license at:

	http://www.gnu.org/licenses/gpl-3.0.txt

Django Conntrackt documentation is licensed under the terms of CC-BY-SA 3.0
Unported license. You should have received the full copy of the CC-BY-SA 3.0
Unported in the local file LICENSE-CC-BY-SA-3.0-Unported, or you may read
the full text of the license at:

http://creativecommons.org/licenses/by-sa/3.0/

The following third-party libraries are included as part of Django Conntrackt,
but are distributed under their own license:

	Bootstrap (sub-directory conntrackt/static/bootstrap)

	Apache License v2.0

	jQuery (file conntrackt/static/jquery-min.js)

	MIT License

Contents

	About Django Conntrackt
	Why was this application created?

	Features

	License

	Installation
	Using pip

	Configuring your Django installation

	Quick-start guide
	Debian/Ubuntu

	Usage
	Key concepts

	Users and permissions

	Navigating the pages

	Managing projects

	Managing locations

	Managing entities

	Managing interfaces

	Managing communications

	Generating and downloading iptables rules

	Managaing data through django.contrib.admin

	Development
	Preparing development environment

	Development/test Django project

	Running tests

	Keeping installation and development requirements up-to-date

	Release procedures
	Versioning schema

	Writing release notes

	Release issue template

	Backporting fixes

	Releasing new version

	Release Notes
	0.3.1

	0.3.0

	0.2

	0.1

Indices and tables

	Index

	Module Index

	Search Page

 [image: Creative Commons License]
This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.

About Django Conntrackt

Django Conntrackt is a simple application targeted at system
administrators and integrators that deploy servers at client’s
premises that need a way to keep track of required network
connectivity.

Application allows tracking of required network communications between
different servers, routers, client workstations, and even whole
networks/sub-networks.

In addition to keeping track of connections, the application has the ability to
generate simple iptables rules based on the connections specified. The
generated rules can be easily applied using the iptables-restore utility.

At time of this writing, Django Conntrackt is compatible with the
following Django and Python versions:

	Python 2.7.x

	Django 1.5.x

Why was this application created?

The application was created in order to alleviate painful and error prone
tracking of IP addresses and network communications inside of spreadsheet
files. Another reason was the need to create simple iptables rules based on this
information with as little hassle as possible.

The iptables generation requirements for Django Conntrackt were farily simple,
and do not include any complex functionality. It all boils down to rejecting all
communication except for explicitly defined links.

Features

Django Conntrackt sports a number of useful features for system administrators
and integrators:

	Managing entities through multiple projects (separating the entities
per-project basis).

	Grouping entities inside of a project in one or more locations (which can be
either logical or physical).

	Specifying entities that represent servers, routers, workstations, networks,
subnets or any other networked device or abstraction within a network.

	Specifying multiple network interfaces for each entity.

	Specifying the communication link between two entities, which includes
information such as protocol and port.

	Generation of iptables rules for devices based on GNU/Linux that can be
consumed by the iptables-restore utility.

	Generation of iptables rules on per-location/project basis (multiple
iptables rule files inside of a single ZIP file).

For more information, please have a look at full documentation at one of the
following websites:

	https://django-conntrackt.readthedocs.io/

License

Django Conntrackt application is licensed under the terms of GPLv3, or (at
your option) any later version. You should have received the full copy of the
GPLv3 license in the local file LICENSE-GPLv3, or you may read the full text
of the license at:

	http://www.gnu.org/licenses/gpl-3.0.txt

Django Conntrackt documentation is licensed under the terms of CC-BY-SA 3.0
Unported license. You should have received the full copy of the CC-BY-SA 3.0
Unported in the local file LICENSE-CC-BY-SA-3.0-Unported, or you may read
the full text of the license at:

http://creativecommons.org/licenses/by-sa/3.0/

The following third-party libraries are included as part of Django Conntrackt,
but are distributed under their own license:

	Bootstrap (sub-directory conntrackt/static/bootstrap), under
Apache License v2.0.

	jQuery (file conntrackt/static/jquery-min.js), under MIT License.

 [image: Creative Commons License]
This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.

Installation

Django Conntrackt can be installed through one of the following methods:

	Using pip, which is the recommended way for production
websites.

Using pip

In order to install latest stable release of Django Conntrackt using pip, use
the following command:

pip install conntrackt

In order to install the latest development version of Django Conntrackt from
Mercurial repository, use the following command:

pip install -e hg+http://code.majic.rs/conntrackt#egg=conntrackt

Warning

You will need to update the pip installation in your virtual environment if you get the following error while running the above command:

AttributeError: 'NoneType' object has no attribute 'skip_requirements_regex'

You can update pip to latest version with:

pip install -U pip

After this you should proceed to configure your Django installation.

Configuring your Django installation

Once the Django Conntrackt has been installed, you need to perform the following
steps in order to make it available inside of your Django project:

	Edit your project’s settings configuration file (settings.py), and update
the INSTALLED_APPS to include applications south, braces and conntrackt.

	Edit your project’s URL configuration file (urls.py), and add the
following line to the urlpatterns setting:

url(r'^conntrackt/', include('conntrackt.urls')),

	Create the necessary tables used for Django Conntrackt by running:

./manage.py syncdb

After this the Django Conntrackt application will be available under the
/conntrackt/ path (relative to your Django project’s base URL).

If you have enabled django.contrib.admin, you should be able to add new
Conntrackt data through the admin interface.

 [image: Creative Commons License]
This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.

Quick-start guide

This chapter provides quick-start instructions in order to allow you to quickly deploy and test Django Conntrackt application.

Debian/Ubuntu

Install the required distribution packages:

sudo apt-get install python2.7 graphviz virtualenv virtualenvwrapper

Open up a new shell to make sure the virtualenvwrapper is now
active.

Create the virtual environment for testing Django Conntrackt:

mkvirtualenv conntrackt

Install Django Conntrackt with its requirements:

workon conntrackt
pip install django-conntrackt

Warning

You will need to update the pip installation in your virtual environment if you get the following error while running the above command:

AttributeError: 'NoneType' object has no attribute 'skip_requirements_regex'

You can update pip to latest version with:

pip install -U pip

Start a new Django Conntrackt project:

django-admin.py startproject conntrackt_test

Edit configuration file conntrackt_test/conntrackt_test/settings.py to set-up
some basic settings:

	Under DATABASES set parameter ENGINE to 'django.db.backends.sqlite3'.

	Under DATABASES set parameter NAME to 'conntrackt_test.sqlite'.

	Under INSTALLED_APPS uncomment the line 'django.contrib.admin'.

	Under INSTALLED_APPS append lines:

'south',
'braces',
'conntrackt',

	Append the following lines to the end of the file:

from django.conf.global_settings import TEMPLATE_CONTEXT_PROCESSORS
TEMPLATE_CONTEXT_PROCESSORS += (
 "django.core.context_processors.request",
)

Edit the URL configuration file conntrackt_test/conntrackt_test/urls/.py to
set-up the URLs for the admin website and Conntrackt itself:

	At the top of the file, add line from django.http import HttpResponseRedirect.

	Uncomment line from django.contrib import admin.

	Uncomment line admin.autodiscover().

	Uncomment line url(r'^admin/', include(admin.site.urls)),

	Under urlpatterns append lines:

url(r'^$', lambda r : HttpResponseRedirect('conntrackt/')),
url(r'^conntrackt/', include('conntrackt.urls')),

Set-up the database for the project:

cd conntrackt_test/
python manage.py syncdb
python manage.py migrate

You will be prompted to provide some additional information:

	When prompted to create a superuser, answer yes.

	Provide the desired username when prompted for it.

	Provide the desired e-mail address when prompted for it.

	Provide the desired password for created user.

After this the project is fully configured to run Django Conntrackt. Run the
Django development server (good enough for testing, but don’t use it in
production):

python manage.py runserver

	You can now explore the functionality of Djang Conntrackt at::

	http://localhost:8000/

If you have any problems getting around and understanding how the applications
works, have a look at the usage guide.

 [image: Creative Commons License]
This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.

Usage

Django Conntrackt provides a very simple interface for reading and editing the
information about network connections across projects, as well as for obtaining
iptables rules.

Key concepts

There is a couple of key concepts to be aware of throughout the documentation:

	Project

	A project is used to group the related entities. Project usually maps to
business projects being worked on by the organisation members.

	Location

	Location is used to group the related entities within a project. Locations
can be abstract, like primary site, secondary site, or disaster
site. They can also be more specific, like Belgrade, or Stockholm. The
layout of locations is completely up to the user of Conntrackt.

	Entity

	Entity is an origin or destination of network communication. An entity can
represent a single physical or virtual device (server, router, or some other
network-capable device), or it can represent a subnet (therefore being
mapped to multiple physical or virtual devices).

Every entity must have an assigned project and location.

	Interface

	Interface is used for representing a specific network interface on an
entity. In regular case, where the entity is a physical or virtual device,
an interface will map to a single IP address.

An interface is also used to provide subnet information for entities that
represent subnets.

Entity can have more than one interface assigned to it.

	Communication

	Communication is used to specify possible connections between entities. Each
communication contains information about source interface (of a specific,
source entity), destination interface (of a specific, target entity),
protocol type (TCP, UDP, ICMP), and port number (or, in case of ICMP,
package type).

In addition to describing the various connections that happen between
entities, communication information is also used for generating the
iptables rules for servers.

Users and permissions

Conntrackt employs standard Django permissions for object creation and
modification. This includes ability to add, change, and delete projects,
locations, entities, interfaces, and communications.

In addition to write-related permissions, Conntrackt also comes with a single
read permission that is used to restrict read access to Conntrackt data (Can
view information). This permission is required in order to allow the users to
view the projects, locations, entities, interfaces, and communications. This is
the minimal permission necessary that should be granted to all users.

Navigating the pages

Navigation bar

The navigation bar is available on every page. Navigation bar contains at least
the following elements:

	Main Page link will take you to Conntrackt homepage.

	Administration link will take you to Django’s built-in administrator
interface, which can be used both for managing the users, and for adding and
modifying content. It is recommended to use Conntrackt’s native user
interface for adding and modifying content.

If you are currently logged-in, you will also be presented with the following
two elements:

	Username, which links to your profile page (NOT IMPLEMENTED).

	Log-out link.

If you are not logged-in, you will instead be presented with the following
elements:

	Log-in link, which will take you to the log-in page.

Main page

The main page gives a simple listing of the available projects and
locations.

Each row in a project listing includes:

	Project name, which can be clicked on in order to get to the project
details page.

	Download project iptables link (small book icon), which can be used for
downloading the iptables rules for an entire project.

	Edit project link (small pen icon), which can be used for editing basic
information about a project.

	Remove project link (small cross icon), which can be used for removing a
project.

Each row in a location listing includes:

	Location name.

	Edit location link (small pen icon), which can be used for editing basic
information about a location.

	Remove location link (small cross icon), which can be used for removing a
location.

Project details page

The project details page provides listing of entities, as well as a diagram
showing the communications between them. The project details page also includes
links and buttons for manipulating the project information (including entities).

From top to bottom the page includes the following elements:

	Project title.

	Description of a project.

	Buttons for project-specific actions.

	Listing of end entities, grouped by locations.

	Communications diagram.

The project-specific buttons are:

	Edit, which can be used for editing basic information about a project.

	Remove, which can be used for removing a project.

	Add entity, which can be used for adding new entities to a project.

	Add communication, which can be used for adding a new communication to the
project.

	Get Iptables, which can be used for downloading iptables rules for all
entities in a project.

Each location-specific entity listing includes a download location iptables
link (small book icon), which can be used for downloading the iptables rules
for entities of a project in that particular location. Each entity row in the
listing includes:

	Entity name, which can be clicked on in order to get to the entity
details page.

	Download entity iptables link (small list icon), which can be used for
downloading the iptables rules for an entity.

	Edit entity link (small pen icon), which can be used for editing basic
information about an entity.

	Remove entity link (small cross icon), which can be used for removing an
entity.

A small add entity button is available within each location-specific
listing, which can also be used for adding entities to a project. The difference
is that if location-specific button is used, the location of new entity will be
pre-populated (saving some time).

The communications diagram displays all project entities, grouped by the
location, as well as communications between the entities. Each entity will be
represented by a distinctly-coloured square. The arrows pointing outside of the
entity represent an outgoing communication of an entity. Communications
displayed will also include information about the protocol and port being used.

The format of the diagram image is SVG.

Entity details page

The entity details page provides listing of entity’s general information,
interfaces, incoming and outgoing communications, as well as the iptables rules.

From top to bottom the page includes the following elements:

	Entity name.

	Entity description.

	Buttons for entity-specific actions.

	General information about the entity.

	Listing of entity’s interfaces.

	Listing of entity’s incoming communications.

	Listing of entity’s outgoing communications.

	Iptables rules for the entity.

The entity-specific buttons are:

	Edit, which can be used for editing basic information about an entity.

	Remove, which can be used for removing an entity.

	Get Iptables, which can be used for downloading the iptables rules for the
entity.

The general information about an entity includes:

	Project to which the entity belongs. The project name can be clicked on in
order to get to the project details page.

	Location where the entity can be found.

Each row of the interface listing includes:

	Interface name, with IP/netmask as well.

	Edit interface link (small pen icon), which can be used for editing basic
information about an interface.

	Remove interface link (small pen icon), which can be used for removing an
interface.

An add interface button can be found at the bottom of the interface listing,
which can be used for adding a new interface to the entity.

Each row of the incoming/outgoing communications listing includes:

	Entity and interface name, which can be clicked on in order to get to the
source/destination entity.

	Edit communication link (small pen icon), which can be used for editing
communication information.

	Remove communication link (small cross icon), which can be used for removing
a communication.

The iptables rules section displays the full iptables rules for an
entity. It also sports a convenient download button for getting the iptables
rules.

Managing projects

Adding a project

New projects can be added from the main page. You can navigate to the main
page via link in the navigation bar.

Once at the main page, click on the Add project button. This will take you
to a page where some basic project information can be provided:

	Name (mandatory). This is the name of the project. Project name must be
unique.

	Description (optional). This is the project description. This is a free-form
field, and it can be filled-up by user as needed.

Once the mandatory fields have been filled-up, click on the Add button to add
the project. If no errors have been reported, and project was created
successfully, you will be taken to the project details page.

Removing a project

Project can be removed either via the main page or via project details
page.

In order to remove a project via main page, navigate to it, and click on the
remove icon (small cross) next to the project name in the project listing.

In order to remove a project via project details page, navigate to the main
page, click on the project name in order to be taken to the project details
page, and then click on the Remove button towards the top of the page.

In both cases you will be prompted to confirm the removal of project. Keep in
mind that removing a project will also remove any entities that are associated
with it, interfaces of those entities, as well as communications involving those
entities.

Updating a project

Basic project information can be updated either via main page or via project
details page.

In order to update a project via main page, navigate to it, and click on the
edit icon (small pen) next to the project name in the project listing.

In order to update a project via project details page, navigate to the main
page, click on the project name in order to be taken to the project details
page, and then click on the Edit button towards the top of the page.

Both actions will take you to the update page for a project where you can edit
the name and description of an existing project. In order to apply the
changes you made, click on the Update button.

Managing locations

Adding a location

New locations can be added from the main page. You can navigate to the main
page via link in the navigation bar.

Once at the main page, click on the Add location button. This will take
you to a page where some basic location information can be provided:

	Name (mandatory). This is the name of the location. Location name must be
unique.

	Description (optional). This is the location description. This is a
free-form field, and it can be filled-up by user as needed.

Once the mandatory fields have been filled-up, click on the Add button to
add the location.

Removing a location

Location can be removed via the main page.

Navigate to the main page, and click on the remove icon (small cross) next
to the location name in the location listing.

You will be prompted to confirm the removal of location. Keep in mind that
removing a location will also remove any entities that are associated with it,
as well as interfaces and communications associated with those entities.

Updating a location

Basic location information can be updated via main page.

In order to update a location navigate to main page, and click on the edit
icon (small pen) next to the location name in the location listing.

This will take you to the update page for a location where you can edit the
name and description of an existing location. In order to apply the changes
you made, click on the Update button.

Managing entities

Adding an entity

New entities can be added to a project via project details page. The page can
be reached by going to the main page, and then clicking on specific project
name in project list.

Once at the project details page, click on the Add entity button, either
on the one towards the top of the page, or location-specific one. This will take
you to a page where some basic entity information can be provided:

	Name (mandatory). This is the name of an entity. Entity name must be unique
in a project. Same name can be used by multiple entities as long as they
belong to separate projects.

	Description (optional). This is the entity description. This is a free-form
field, and it can be filled-up by user as needed.

	Project (mandatory). This is the project that the entity will belong to. The
project will have a fixed value.

	Location (mandatory). This is the location where the entity is located. If
location-specific Add entity button was used, this field will have a fixed
value.

Once the mandatory fields have been filled-up, click on the Add button to
add the entity.

Tip

Using location-specific Add entity can be a great time-saver if you need
to add a lot of entities to a single location. Use it sparingly.

Removing an entity

Entity can be removed either via the project details page or via entity
details page.

In order to remove an entity via project details page, navigate to it, and
click on the remove icon (small cross) next to the entity name.

In order to remove an entity via entity details page, navigate to the project
details page, click on the entity name in order to be taken to the entity
details page, and then click on the Remove button towards the top of the
page.

In both cases you will be prompted to confirm the removal of entity. Keep in
mind that removing an entity will also remove any interfaces that are associated
with it, as well as related communications.

Updating an entity

Basic entity information can be updated either via project details page or via
entity details page.

In order to update an entity via project details page, navigate to it, and
click on the edit icon (small pen) next to the entity.

In order to update an entity via entity details page, navigate to the project
details page, click on the entity name in order to be taken to the entity
details page, and then click on the Edit button towards the top of the
page.

Both actions will take you to the update page for an entity where you can edit
the name, description, project, or location of an existing entity. In
order to apply the changes you made, click on the Update button.

Warning

Project to which an entity belongs can only be changed if there’s no defined
communications involving the entity in its current project.

Managing interfaces

Adding an interface

New interface can be added to an entity via entity details page. The page can
be reached by going to the project details page, and then clicking on specific
entity name in the list.

Once at the entity details page, click on the Add interface button. This
will take you to a page where some basic entity information can be provided:

	Name (mandatory). This is the name of an interface. Interface name must be
unique in an entity. Same name can be used by multiple interfaces as long as
they belong to separate entities.

	Description (optional). This is the interface description. This is a
free-form field, and it can be filled-up by user as needed.

	Entity (mandatory). This is the entity that the interface will belong
to. The entity will have a fixed value.

	Address (mandatory). This is the IP address of an interface.

	Netmask (mandatory). This is the netmask associated with the interface IP
address. If the entity address is not a subnet (i.e. it’s supposed to be a
single IP address), netmask should be set to 255.255.255.255. Conntrackt
takes into account the difference between single IP address and subnet,
producing slightly different iptables rules based on this (for single IP
addresses, the netmask of 255.255.255.255 is omitted).

Once the mandatory fields have been filled-up, click on the Add button to
add the interface. This will take you back to the entity details page.

Removing an interface

Location can be removed via the entity details page.

Navigate to the entity details page, and click on the remove icon (small cross) next
to the interface name in the interface listing.

You will be prompted to confirm the removal of interface. Keep in mind that
removing an interface will also remove any communications associated with that
interface.

Updating an interface

Basic interface information can be updated via entity details page.

In order to update an interface, navigate to entity details page, and click on
the edit icon (small pen) next to the interface name in the interface
listing.

This will take you to the update page for an interface where you can edit the
name, description, entity, address, and netmask of an existing
interface. In order to apply the changes you made, click on the Update
button.

Managing communications

Adding a communication

New communications can be added to a project via project details page or via
entity details page.

In order to add a communication via project details page, navigate to it, and
click on the Add communication button.

In order to add a communication via entity details page, navigate to it, and
click on one of the Add communication buttons located in incoming/outgoing
communication listings.

In both cases this will take you to a page where communication information can
be provided:

	Source (mandatory). This is the source interface from which the
communication originates.

	Destination (mandatory). This is the destination interface at which the
communication terminates.

	Protocol (mandatory). This is the protocol used for the communication (TCP,
UDP, or ICMP).

	Port (mandatory). This is the port used for communication (in case of
TCP/ICMP), or packet type (in case of ICMP).

	Description (optional). This is the communication description. This is a
free-form field, and it can be filled-up by user as needed. The communication
description will be visible in the generated iptables rules as well (just
above the rule).

Once the mandatory fields have been filled-up, click on the Add button to
add the communication.

Tip

Using the Add communication buttons from the entity details page means
that the form will have pre-selected the source or destination to be the
first interface of the entity at hand. This can be quite useful when adding a
lot of communications that affect a specific entity (for example, database
server).

Removing a communication

Location can be removed via the entity details page.

Navigate to the entity details page, and click on the remove icon (small cross) next
to the communcation in the incoming/outgoing communication listing.

You will be prompted to confirm the removal of communication.

Updating a communication

Communication can be updated via entity details page.

In order to update a location navigate to entity details page, and click on
the edit icon (small pen) next to the communication in the incoming/outgoing
communication listing.

This will take you to the update page for a communication where you can edit the
source, destination, protocol, port, and description of an existing
communication. In order to apply the changes you made, click on the Update
button.

Generating and downloading iptables rules

In addition to tracking the communications across a project, one of the main
features of Conntrackt is its ability to generate the iptables rules for all
entities in a project based on provided communications data.

These iptables rules can then be easily applied to GNU/Linux entities. The
rules are generated with the following restrictions in mind:

	Default target for INPUT chain is DROP.

	Default target for FORWARD chain is DROP.

	Default target for OUTPUT chain is ALLOW.

	No limits are imposed on the OUTPUT chain.

	Rules for the INPUT chain are applied using a whitelist. Only explicitly
defined communications in the iptables will be used to generate the ACCEPT
rules. The matching is performed based on source, protocol, and
destination port.

	The INPUT chain will contain the following default rules as well:

-A INPUT -i lo -j ACCEPT
-A INPUT -m state --state RELATED,ESTABLISHED -j ACCEPT

This will allow all incoming connections from the localhost itself, as well as
any incoming packages of previously-established connections.

Rules can be downloaded either induvidually, for a specific entity, or in
bulk. If downloaded in bulk, the iptables rules can be downloaded either for
an entire project, or for a specific location of a project.

The bulk download results in a ZIP archive which contains the iptables rules
for each entity in a separate file.

The iptables rules for a specific entity can be downloaded both from a
Project details page (the download entity iptables link that looks like a
small list icon, right next to the entity name), or via Entity details page
(the get iptables button at top, and download button just below the
iptables listing).

Project iptables rules can be downloaded either via the Main page (download
project iptables link that looks like a small book next to the project), or
through the project details page (download iptables button at top).

Project iptables rules for a specific location can be downloaded from Project
details page, via the small download location iptables link (small book
icon), located right next to the location name.

Managaing data through django.contrib.admin

Although the preferred interface for managing data in Conntrackt is through its
own pages, it is possible to make modifications to the data through Django’s
built-in administration interface (django.contrib.admin). It is possible to
both add new data, as well as modify the existing information.

The admin interface for Conntrackt behaves the same as for every Django
application, except for some convenience functionality that helps speed-up
adding or modification of some data.

The interfaces, entities, and communications pages allow editing most of the
data inline, which can speed-up the process quite a bit. In addition, all three
pages provide filters that allow you to easily view data specific to a
particular project and/or location. The filters are available on the right side.

While interfaces can be managed separately, you may find it much easier to
manage them from within the entity pages. When adding or modifying an entity,
you will have some inline forms for specifying entity’s interfaces. This is the
recommended way to add and modify the interfaces for entities.

Wherever possible, inline fields are used in order to allow easier updates to
existing information. This is particularly useful in case of communications, and
to lesser effect entities and interfaces.

When editing communications you may find it particularly useful to add them
through the communications list page by first specifying a filter (by project
and/or location), and then clicking on the Add communication link. This way
the filter will be applied to source and destination fields.

For example, if you choose project Test, and location Main site, and
then click on the Add communication button, the source and destination
fields will be limited to entity interfaces that specificaly belong to the
Test project and location Main site.

You can also easily modify existing communications using the communication
listing page. From there you can easily modify source, destination, protocol,
and port. Similarly to adding a new communication, you can apply a filter that
will narrow-down the selection for source and destination. It is highly
recommended to apply the filter in this way.

 [image: Creative Commons License]
This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.

Development

This section provides an overview of how to take care of Django
Conntrackt development, including instructions on how to get started,
procedures, and common tools.

Instructions are primarily aimed at use of Debian Stretch (as of time
of this writing). If you are running a different distribution or OS,
you will need to modify the instructions to suit your environment.

Preparing development environment

Perform the following steps in order to prepare development
environment:

	Ensure that the following system packages are available on the
system:

	Python 2.7.x [https://www.python.org/]

	Graphviz [https://graphviz.org/]

	virtualenv [https://pypi.python.org/pypi/virtualenv]

	virtualenvwrapper [https://virtualenvwrapper.readthedocs.io/en/latest/]

Under Debian GNU/Linux it should be easy to install all the
necessary dependencies with command (provided you have sudo set-up,
otherwise run command as root without sudo):

Warning

Don’t forget to start a new shell in order to be able to use the
virtualenvwrapper.

sudo apt-get install python2.7 graphviz mercurial virtualenv virtualenvwrapper

	Clone the application repository:

mkdir ~/projects/
hg clone https://code.majic.rs/conntrackt/ ~/projects/conntrackt

	Set-up a new virtual environment:

mkvirtualenv -a ~/projects/conntrackt/ conntrackt

	Install required packages in the virtual environment:

workon conntrackt && pip install -r ~/projects/conntrackt/requirements/development.txt

Development/test Django project

Django Contrackt comes with a test Djanbo project which can be used
out-of-the-box once database has been initialised.

Once the development environment has been set-up, you can set-up its
database with:

workon conntrackt
cd testproject/
./manage.py syncdb
./manage.py migrate

Once the database has been set-up, run the development server with:

workon conntrackt
cd testproject/
./manage.py runserver

To access the application via started development server, simply point
your browser to http://localhost:8000/conntrackt/ .

Running tests

The application is well covered with various (primarily unit) tests,
and the tests can be easily run via the supplied test/development
projects. Once the development environment has been set-up, tests can
be easily run with:

workon conntrackt
cd ~/projects/conntrackt/testproject/
./manage.py test conntrackt

Keeping installation and development requirements up-to-date

There are two different types of (pip) requirements to keep in
mind while developing the application:

	Package installation requirements, specified in setup.py.

	Development requirements, maintained in dedicated requiremnts files.

Distinction exists in order to allow faster start-up with the
development environment, as well as to ensure that during the
installation of package no side-effects are encountered due to
dependencies being too lax or untested.

Base installation requirements are preserved within the setup.py
configuration script and are updated on as-needed basis by
hand. Packages within are pinned to stable releases required by
Conntrack to properly operate. For example, Django version is fixed to
reduce chance of running application against a wrong Django version.

Development requirements duplicate the information stored within
setup.py, but also introduce some addtional tools required for
running tests, or tools that simply make the life easier.

Development requirements are kept up-to-date via pip-compile from
pip-tools [https://pypi.python.org/pypi/pip-tools/].

The input into the tool are the .in files located within the
requirements sub-directory:

	base.in, which reflects requirements outlined within the
setup.py.

	development.in, which includes the base requirements, as well as
additional ones needed for the normal development process.

	test.in, which includes the base requirements, as well as
additional ones needed to run the tests.

These input files are maintained by hand as well. However, the
resulting requirements .txt files are updated via the
pip-compile tool. In order to sync changes in .in files, or to
update the requirements, simply run commands:

workon conntrackt
pip install pip-tools
pip-compile --upgrade ./requirements/development.in
pip-compile --upgrade ./requirements/test.in

Afterwards you can commit the changes via standard Mercurial tools
(make sure the new requirements do not break the development/testing).

Should you wish to, you can also opt to use the pip-sync utility
to keep your development environment in sync with the requirements
file. Just keep in mind that it will uninstall any package not listed
in requirements, and that it will force package versions from the
requirements file:

workon conntrackt
pip-sync ./requirements/development.txt

 [image: Creative Commons License]
This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.

Release procedures

This section documents various release procedures. This includes:

	General versioning schema principles.

	General backporting principles.

	Releases of major versions.

	Releases of minor versions.

	Releases of patch versions.

	Writing release notes.

	Release issue template.

Versioning schema

Django Conntrackt project employs semantic versioning [http://semver.org/] schema. In short:

	Each version is composed of major, minor, and patch number. For example, in
version 1.2.3, 1 is the major, 2 is the minor, and 3 is the
patch number.

	Major number is bumped when making a backwards incompatible
change. I.e. anything that depends on Django Conntrackt may need to make
changes in order to keep working correctly.

	Minor number is bumped when new features or changes are made without breaking
backwards compatibility. I.e. if you were using version 1.2.3, you should
be safe to upgrade to version 1.3.0 without making any changes to whatever
is using Django Conntrackt.

	Patch number is bumped when making purely bug-fix backwards compatible
changes. Patch releases are generally more likely to remain stable simply due
to limited scope of changes (new features can sometimes introduce unexpected
bugs). It shouild be noted that due to relatively limited resources I have
(plus, the roles are mainly used by myself :), patch releases might be a bit
more scarce, and I might opt for going for minor release instead to reduce
amount of work needed (backporting and releasing).

In addition to versioning schema, Django Conntrackt employs a specific
nomenclature for naming the branches:

	All new development and bug-fixing uses default branch as the base.

	Patch releases are based off the maintenance branches. Mainteance branches are
named after the MAJOR and MINOR number of the version. For example, if
a new release is made with version 1.2.0, the corresponding branch that is
created for maintenance will be named 1.2 (notice the absence of .0 at
the end).

Writing release notes

Release notes should be updated in relevant branches as the issues are
getting resolved. The following template should be used when
filling-up the release notes (take note the links to issues are kept
on separate page):

VERSION

GENERAL DESCRIPTION

Breaking changes:

* DESCRIPTION
 [`CONNT-NUMBER <https://projects.majic.rs/conntrackt/issues/CONNT-NUMBER>`_]

New features/improvements:

* DESCRIPTION
 [`CONNT-NUMBER <https://projects.majic.rs/conntrackt/issues/CONNT-NUMBER>`_]

Bug-fixes:

* DESCRIPTION
 [`CONNT-NUMBER <https://projects.majic.rs/conntrackt/issues/CONNT-NUMBER>`_]

Release issue template

The following template can be used when creating the issue for a
release in the issue tracker:

	Set subject to Release version MAJOR.MINOR.PATCH.

	Set description to:

Release version MAJOR.MINOR.PATCH. Release should be done
according to release procedures outlined in offline documentation.

Backporting fixes

From time to time it might become useful to apply a bug-fix to both
the default development branch, and to maintenace branch.

When a bug is discovered in one of the roles (or maybe documentation), and it
should be applied to maintenance branch as well, procedure is as follows:

	Create a new bug report in issue tracker [https://projects.majic.rs/conntrackt]. Target version should be
either the next minor or next major release (i.e. whatver will get released
from the default development branch).

	Create a copy of the bug report, modifying the issue title to include phrase
(backport to MAJOR.MINOR) at the end, with MAJOR and MINOR
replaced with correct versioning information for the maintenance
branch. Make sure to set correct target version (patch release).

	Resolve the bug for next major/minor release.

	Reslove the bug in maintenace branch by backporting (using graft if
possible) the fix into maintenace branch. Make sure to reword the
commit message (to reference the backport issue) .

Releasing new version

The following procedure is applicable to both major/minor and patch
releases, with any relevant differences pointed out in the individual
steps.

Perform the following steps in order to release a new version:

	Verify that there are no outstanding issues blocking the release.

	Prepare release environment:

	Switch to the project Python virtual environment:

workon conntrackt

	Set release version, and set issue associated with making the
release:

VERSION="MAJOR.MINOR.PATCH"
ISSUE="CONNT-NUMBER"
BRANCH="${VERSION%.*}"

	Verify the information has been set correctly:

echo "[$ISSUE] $BRANCH -> $VERSION"

	If this is a new major/minor release, prepare the maintenance
branch:

Warning

Make sure not to run these steps when making a patch release!

	Create the maintenance branch:

hg branch "$BRANCH"

	Update versioning information in documentation and setup
script:

sed -i -e "s/^version = .*/version = '${BRANCH}-maint'/" docs/conf.py
sed -i -e "s/^ version=.*/ version='${BRANCH}-maint',/" setup.py
sed -i -e "s/^dev$/${BRANCH}-maint/" docs/releasenotes.rst

	Fix the title underline for version string in
docs/releasenotes.rst.

	Show differences before committing:

hg diff

	Commit the changes:

hg commit -m "$ISSUE: Creating maintenance branch ${BRANCH}."

	Ensure you are on the maintenance branch:

	Switch to maintenance branch:

hg update "$BRANCH"

	Verify the switch:

hg branch

	Create release commit:

Warning

Make sure not to push changes at this point, since the relesae
commit must be tested first.

	Update versioning information in documentation and setup
script:

sed -i -e "s/^version = .*/version = '${VERSION}'/" docs/conf.py
sed -i -e "s/^ version=.*/ version='${VERSION}',/" setup.py
sed -i -e "s/^${BRANCH}-maint$/${VERSION}/" docs/releasenotes.rst

	Fix the title underline for version string in
docs/releasenotes.rst.

	Show differences before committing:

hg diff

	Commit the changes:

hg commit -m "$ISSUE: Releasing version ${VERSION}."

	Verify release behaves as expected:

	Verify that documentation builds and looks correct:

(cd docs/; make clean html; firefox _build/html/index.html)

	Run tests:

(cd testproject; python manage.py test)

	Build source distribution package, verifying no errors are
reported:

python setup.py sdist

	Test the quick-start instructions to ensure they are still
applicable. When installing the package, make sure to use the
source distribution package from previous step.

	Correct any outstanding issues prior to proceeding further, and
repeat the test cycle for any sort of change, ammending the
previous commit if possible (instead of creating new ones).

	Push release to PyPI:

	Tag the release:

hg tag "$VERSION"

	Push the (tested) built source distribution:

python setup.py sdist upload

	Clean-up the maintenance branch:

	Start a new release notes section in docs/releasenotes.rst:

sed -i "/^Release Notes$/{N;s/$/\n\n\n${BRANCH}-maint\n-----------/}" docs/releasenotes.rst

	Update versioning information in documentation and setup
script:

sed -i -e "s/^version = .*/version = '${BRANCH}-maint'/" docs/conf.py
sed -i -e "s/^ version=.*/ version='${BRANCH}-maint',/" setup.py

	Fix the title underline for version string in
docs/releasenotes.rst.

	Show differences before committing:

hg diff

	Commit the changes:

hg commit -m "$ISSUE: Bumping version back to maintenance."

	Clean-up the default branch if you have just released a new
major/minor version:

Warning

Make sure not to run these steps when making a patch release!

	Switch to default development branch:

hg update default

	Verify the switch:

hg branch

	Update versioning information in release notes:

sed -i -e "s/^dev$/${VERSION}/" docs/releasenotes.rst

	Start a new release notes section in docs/releasenotes.rst:

sed -i "/^Release Notes$/{N;s/\$/\n\n\ndev\n---/}" docs/releasenotes.rst

	Fix the title underlines for version strings in
docs/releasenotes.rst.

	Show differences before committing:

hg diff

	Commit the changes:

hg commit -m "$ISSUE: Starting new release notes in default development branch."

	Wrap-up changes on external services:

	Push the changes to upstream repository and its mirror:

hg push
hg push bitbucket

	Go to Read the Docs administrative pages [https://readthedocs.org/projects/django-conntrackt/], and
add the build for new version, retiring any unsupported
versions along the way.

	Mark issue as resolved in the issue tracker.

	Release the version via release center in the issue tracker.

	Archive all other releases.

 [image: Creative Commons License]
This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.

Release Notes

0.3.1

Bug-fixes:

	Fixed minor issues in the release procedure documentation.
[NO TICKET]

	Wrong version of Django Crispy Forms was required by the
package. This resulted in inability to practically use the
application because of exceptions being thrown.
[CONNT-32 [https://projects.majic.rs/conntrackt/issues/CONNT-32]]

0.3.0

Breaking changes:

	Package now has hard dependency on more specific versions of
requirements in order to ensure it is not used with incompatible
variants (for example, Django has been fixated to version
1.5.x). This could cause some issues if application is used with
newer Django versions etc.
[CONNT-28 [https://projects.majic.rs/conntrackt/issues/CONNT-28]]

New features/improvements:

	A lot of cleanup was performed to make it easier to handle
development process etc. These are mostly internal changes, except
for small documentation fixes.
[CONNT-28 [https://projects.majic.rs/conntrackt/issues/CONNT-28]]

Bug-fixes:

	Documentation links have been updated to point to new Read The Docs
domain.
[CONNT-27 [https://projects.majic.rs/conntrackt/issues/CONNT-27]]

0.2

This release contains mainly some usability features, and some minor
bug-fixes. No changes to database schema were made.

New features:

	Tabluar representation of project communications, with colour-coding matching
the diagram. [CONNT-17 [https://projects.majic.rs/conntrackt/issues/CONNT-17]]

	Simple search functionality, including search suggestions if JavaScript is
enabled. [CONNT-19 [https://projects.majic.rs/conntrackt/issues/CONNT-19],
CONNT-23 [https://projects.majic.rs/conntrackt/issues/CONNT-23]]

	Removing an object will list all related objects that will get removed as
well. [CONNT-20 [https://projects.majic.rs/conntrackt/issues/CONNT-20]]

Bug fixes:

	Generates valid XHTML5 code now. [CONNT-24 [https://projects.majic.rs/conntrackt/issues/CONNT-24]]

0.1

Initial relase of Django Conntrackt. Contains full support for:

	Managing application data.

	Generation of iptables rules.

	Generation of communication diagram.

	Full user documentation.

 [image: Creative Commons License]
This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.

Index

 [image: Creative Commons License]
This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.

 _static/comment-bright.png

_static/comment-close.png

_static/cc-by-sa.png
[®)BY-sa |

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/ajax-loader.gif

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Django Conntrackt documentation

 		
 About Django Conntrackt

 		
 Why was this application created?

 		
 Features

 		
 License

 		
 Installation

 		
 Using pip

 		
 Configuring your Django installation

 		
 Quick-start guide

 		
 Debian/Ubuntu

 		
 Usage

 		
 Key concepts

 		
 Users and permissions

 		
 Navigating the pages

 		
 Navigation bar

 		
 Main page

 		
 Project details page

 		
 Entity details page

 		
 Managing projects

 		
 Adding a project

 		
 Removing a project

 		
 Updating a project

 		
 Managing locations

 		
 Adding a location

 		
 Removing a location

 		
 Updating a location

 		
 Managing entities

 		
 Adding an entity

 		
 Removing an entity

 		
 Updating an entity

 		
 Managing interfaces

 		
 Adding an interface

 		
 Removing an interface

 		
 Updating an interface

 		
 Managing communications

 		
 Adding a communication

 		
 Removing a communication

 		
 Updating a communication

 		
 Generating and downloading iptables rules

 		
 Managaing data through django.contrib.admin

 		
 Development

 		
 Preparing development environment

 		
 Development/test Django project

 		
 Running tests

 		
 Keeping installation and development requirements up-to-date

 		
 Release procedures

 		
 Versioning schema

 		
 Writing release notes

 		
 Release issue template

 		
 Backporting fixes

 		
 Releasing new version

 		
 Release Notes

 		
 0.3.1

 		
 0.3.0

 		
 0.2

 		
 0.1

_static/up.png

_static/up-pressed.png

